Expected Value

The expected value of a random variable is the average of all outcomes of the trials if we are to repeat the trial many times (think 100,000 or 1 million times!).

\[\mu_X = E(X) = \sum_{all\ x} x \cdot f(x) \]

Example 1:
Let \(X = \) the number of pizza Alex orders per week.

\[x \quad f(x) \]
\[
\begin{array}{c|c}
0 & 0.05 \\
1 & 0.1 \\
2 & 0.2 \\
3 & 0.35 \\
4 & \\
5 & 0.1 \\
\end{array}
\]

a) What is the expected value of \(X \)?

Variance

The variance of a random variable is a measurement of how spread out the outcomes of the trial are! (just like variance of data)

\[\sigma_X^2 = Var(X) = \sum_{all\ x} (x - \mu_X)^2 \cdot f(x) \]

Example 1: (cont.)

b) Find the variance of \(X \).

\[x \quad f(x) \]
\[
\begin{array}{c|c}
0 & 0.05 \\
1 & 0.1 \\
2 & 0.2 \\
3 & 0.35 \\
4 & \\
5 & 0.1 \\
\end{array}
\]
Standard Deviation

\[\sigma_X = SD(X) = \sqrt{Var(X)} \]

Example 1: (cont.)

c) Find the standard deviation of \(X \).

Example 2:
We are flipping 3 loaded coins. With these coins, the probability of getting tail is 0.3. Let \(X \) be the number of heads we get.

a) What is the probability distribution of \(X \)?

b) On average, how many heads will we get each time?

c) Find the variance and the standard deviation of \(X \)?