Measuring a Linear Relationship
Ha Khanh Nguyen (hknguyen)

Review: Scatterplots
Two methods:

import matplotlib.pyplot as plt
import pandas as pd

plt.scatter(x, y)
df.plot.scatter(x, y)
#where df is the name of the DataFrame containing the variables

Correlation Coefficient
- It measures the strength of the linear association between two variables (X and Y).
- The sample correlation coefficient is notated as \(r \) where the population correlation coefficient is denoted as \(\rho \).
- Correlation coefficient can take any value between -1 and 1.
- Negative values imply that as one variable increases in value, the other decreases in value.
- Positive values imply that as one variable increases in value, the other increases in value as well.

<table>
<thead>
<tr>
<th>Strong Negative</th>
<th>Weak Neg</th>
<th>Weak Pos</th>
<th>Strong Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-0.5</td>
<td>0</td>
<td>+0.5</td>
</tr>
</tbody>
</table>

Computing Correlation Coefficient
There are a number of correlation coefficient formulas in Statistics. The one we will be using is called Pearson’s correlation coefficient:

\[
r = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) / s_x s_y
\]

Luckily, we don’t have to compute this by hand! We can use Python to compute \(r \) for us!

method 1
x.corr(y) # x and y MUST be columns of a DataFrame or Series

method 2
from scipy.stats import pearsonr
pearsonr(x, y) # x and y can be lists, arrays, etc.
Correlation Coefficient Properties

\[x = [1, 2, 3.4, 8, 10.5, 9, 4.5, 5, 7, 6.1, 3.8, 6.1, 7.4, 8.2, 9.9, 10, 12, 7.3, 7.5, 7.3, 10] \]
\[y = [3, 4, 4, 13.6, 17, 17.4, 6, 9.1, 9, 8.1, 6.1, 9.5, 16.1, 11.2, 15.7, 14.1, 15, 12, 13.9, 13, 10] \]

```python
plt.scatter(x, y)
pearsonr(x, y)
```

Let’s try to change X and Y values and see how that affects the correlation coefficient \(r \) of X and Y.

- Adding 10 to every X value. \(\rightarrow \text{remains the same} \)
- Switching Y values with the 3 lowest values with the 3 highest X values. \(\rightarrow \text{decreases} \)
- Switching X and Y. \(\rightarrow \text{remains the same} \)
- Multiplying all of the X values by 2. \(\rightarrow \text{remains the same} \)
- Multiplying all of the X values by -5. \(\rightarrow x = 1 \)

Matching Scatterplots with Correlation Coefficients

\(r = 0.65 \)
\(r = 0.98 \)
\(r = -0.84 \)
\(r = -0.16 \)
\(r = 0.9 \)
\(r = 0.62 \)