Confidence Interval for Population Mean

A confidence interval for the population mean μ with confidence level $(1 - \alpha)100\%$:

- **σ is known:**
 \[
 \bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}
 \]

- **σ is unknown:**
 \[
 \bar{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}
 \]

Rules for computing CIs:

- **Case 1:** σ is known
 - Normal population
 \[
 \bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}
 \]
 - Unknown population
 \[
 \bar{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}
 \]
 - Small n (<30)
 \[
 \bar{x} - \mu \sim N(0, \frac{\sigma}{\sqrt{n}})
 \]

- **Case 2:** σ is unknown
 - Normal population
 \[
 \bar{x} - \mu \sim t(\text{df} = n-1)
 \]
 - Unknown population
 \[
 \bar{x} - \mu \sim t(\text{df} = n-1)
 \]
 - Small n (<30)
 \[
 \bar{x} - \mu \sim t(\text{df} = n-1)
 \]
 - Large n
 \[
 \bar{x} - \mu \sim z
 \]
Example 1:
Suppose the lifetime of a particular brand of light bulbs is normally distributed with standard deviation of \(\sigma = 75 \) hours and unknown mean.

a) Suppose the sample average lifetime of \(n = 49 \) bulbs is \(\bar{x} = 843 \) hours. Construct a 95% confidence interval for the overall average lifetime for light bulbs of this brand.

\[
\bar{x} = 75 \quad n = 49 \quad \bar{x} = 843 \quad \alpha = 0.05
\]

A 95% CI for \(\mu \):

\[
\bar{x} \pm z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} = 843 \pm \text{norm.ppf}(q=0.975) \cdot \frac{75}{\sqrt{49}} \approx (822.0004, 863.9996)
\]

b) Construct a 90% confidence interval for the overall average lifetime for light bulbs of this brand.

\(\alpha = 0.1 \)

A 90% CI for \(\mu \):

\[
\bar{x} \pm z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} = 843 \pm \text{norm.ppf}(q=0.95) \times \frac{75}{\sqrt{49}} \approx (825.3766, 860.6234)
\]

c) Construct a 99% confidence lower bound for the overall average lifetime for light bulbs of this brand.

\(\alpha = 0.01 \)

A 99% conf LB for \(\mu \):

\[
\bar{x} - z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} = 843 - \text{norm.ppf}(1-0.99) \times \frac{75}{\sqrt{49}} \approx 818.0748
\]

Lower Bound:

A \((1 - \alpha)100\%\) lower bound for \(\mu \):

- \(\sigma \) is known: \(\bar{x} - z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \)
- \(\sigma \) is unknown: \(\bar{x} - t_{\alpha} \cdot \frac{s}{\sqrt{n}} \)

Upper Bound:

A \((1 - \alpha)100\%\) upper bound for \(\mu \):

- \(\sigma \) is known: \(\bar{x} + z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \)
- \(\sigma \) is unknown: \(\bar{x} + t_{\alpha} \cdot \frac{s}{\sqrt{n}} \)
Example 2: A manufacturer of TV sets wants to find the average selling price of a particular model. A random sample of 25 different stores gives the mean selling price as $342 with a sample standard deviation of $14. Assume the prices are normally distributed. Construct a 95% confidence interval for the mean selling price of the TV model.

\[ar{x} = 0.05 \]

A 95% CI for \(\mu \):
\[\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} = 342 \pm t_{24} \cdot 14 \sqrt{25} \]
\[\Rightarrow (366.2211, 347.7789) \]

Sample Size Calculation
The minimum required sample size in estimating the population mean \(\mu \) to within \(\varepsilon \) with \((1 - \alpha)100\% \) confidence is
\[n = \left[\frac{Z_{\alpha/2} \cdot \sigma}{\varepsilon} \right]^2 \]
\[\text{Always round } n \text{ up!} \]

Example 3: How many test runs of an automobile are required for determining its average miles-per-gallon rating on the highway to within 0.5 miles per gallon with 95% confidence, if a guess is that the variance of the population of miles per gallon is about 6.25 miles? \[\Rightarrow \varepsilon = 0.5 \]
\[\Rightarrow \alpha = 0.05 \]
\[\Rightarrow \sigma = 0.5 \] \[\Rightarrow \sigma^2 = 6.25 \]
\[n = \left[\frac{Z_{\alpha/2} \cdot \sigma}{\varepsilon} \right]^2 = \left[\frac{\text{norm. ppf} \left(1 - \frac{0.05}{2}, \sqrt{6.25}\right)}{0.5} \right]^2 \approx 96.03 \]
\[\Rightarrow n = 97 \]

To-do:
- Finish Lab 09, commit and push the lab using git commands!
- Get started with HW 8 on Prairie Learn!